3.143 \(\int \sqrt{a+a \sec (c+d x)} \tan ^2(c+d x) \, dx\)

Optimal. Leaf size=96 \[ \frac{2 a^2 \tan ^3(c+d x)}{3 d (a \sec (c+d x)+a)^{3/2}}-\frac{2 \sqrt{a} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d}+\frac{2 a \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(-2*Sqrt[a]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a*Tan[c + d*x])/(d*Sqrt[a + a*Sec[
c + d*x]]) + (2*a^2*Tan[c + d*x]^3)/(3*d*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0769082, antiderivative size = 96, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {3887, 459, 321, 203} \[ \frac{2 a^2 \tan ^3(c+d x)}{3 d (a \sec (c+d x)+a)^{3/2}}-\frac{2 \sqrt{a} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d}+\frac{2 a \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x]^2,x]

[Out]

(-2*Sqrt[a]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a*Tan[c + d*x])/(d*Sqrt[a + a*Sec[
c + d*x]]) + (2*a^2*Tan[c + d*x]^3)/(3*d*(a + a*Sec[c + d*x])^(3/2))

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+a \sec (c+d x)} \tan ^2(c+d x) \, dx &=-\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{x^2 \left (2+a x^2\right )}{1+a x^2} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{2 a^2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}-\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{x^2}{1+a x^2} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{2 a \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+\frac{2 a^2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}+\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,-\frac{\tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac{2 \sqrt{a} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}+\frac{2 a \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+\frac{2 a^2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 3.96644, size = 226, normalized size = 2.35 \[ \frac{8 \sqrt{2} \tan ^3(c+d x) \left (\frac{1}{\sec (c+d x)+1}\right )^{7/2} \sqrt{a (\sec (c+d x)+1)} \left (-\frac{4}{7} \tan ^2\left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \text{Hypergeometric2F1}\left (2,\frac{7}{2},\frac{9}{2},-2 \sin ^2\left (\frac{1}{2} (c+d x)\right ) \sec (c+d x)\right )-\frac{\cos (c+d x) (3 \cos (c+d x)+7) \csc ^4\left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right ) \left ((4 \cos (c+d x)-1) \sqrt{1-\sec (c+d x)}-3 \cos (c+d x) \tanh ^{-1}\left (\sqrt{1-\sec (c+d x)}\right )\right )}{24 \sqrt{1-\sec (c+d x)}}\right )}{3 d \left (1-\tan ^2\left (\frac{1}{2} (c+d x)\right )\right )^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x]^2,x]

[Out]

(8*Sqrt[2]*((1 + Sec[c + d*x])^(-1))^(7/2)*Sqrt[a*(1 + Sec[c + d*x])]*(-(Cos[c + d*x]*(7 + 3*Cos[c + d*x])*Csc
[(c + d*x)/2]^4*Sec[(c + d*x)/2]^2*(-3*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*Cos[c + d*x] + (-1 + 4*Cos[c + d*x])*Sq
rt[1 - Sec[c + d*x]]))/(24*Sqrt[1 - Sec[c + d*x]]) - (4*Hypergeometric2F1[2, 7/2, 9/2, -2*Sec[c + d*x]*Sin[(c
+ d*x)/2]^2]*Sec[c + d*x]*Tan[(c + d*x)/2]^2)/7)*Tan[c + d*x]^3)/(3*d*(1 - Tan[(c + d*x)/2]^2)^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.197, size = 210, normalized size = 2.2 \begin{align*} -{\frac{1}{6\,d\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( 3\,\sqrt{2} \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) +3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}\sin \left ( dx+c \right ) +8\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-4\,\cos \left ( dx+c \right ) -4 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x)

[Out]

-1/6/d*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(3*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(3/2)*arctanh(1/2*2^(1/2)
*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)*cos(d*x+c)+3*2^(1/2)*arctanh(1/2*2^(1/
2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)
+8*cos(d*x+c)^2-4*cos(d*x+c)-4)/sin(d*x+c)/cos(d*x+c)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 1.69962, size = 753, normalized size = 7.84 \begin{align*} \left [\frac{3 \,{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{3 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac{2 \,{\left (3 \,{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) + \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )\right )}}{3 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="fricas")

[Out]

[1/3*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a
)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*sqrt((a*cos(d*x + c) +
 a)/cos(d*x + c))*(2*cos(d*x + c) + 1)*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), 2/3*(3*(cos(d*x + c)
^2 + cos(d*x + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))
 + sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(2*cos(d*x + c) + 1)*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x +
c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )} \tan ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(1/2)*tan(d*x+c)**2,x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*tan(c + d*x)**2, x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError